

Juday Creek ~12 mile long tributary of the St. Joseph River

Cold water stream with substantial ground water influence

Juday Creek – A tale of 2 streams: Drainage ditch – or – High quality trout stream?

- Officially classified as a "natural drain" (a.k.a. drainage ditch)
- Upper portion ditched and straightened
- Lower portion looks less disturbed
- One of only 3 streams in Indiana known to support a naturally breeding brown trout (Salmo trutta) population

Major Events in the History of Juday Creek

- <1920 Agricultural drainage; upper portion ditched
- 1930s Izaak Walton League develops trout fishery
- 1940s Some development and diversions along stream
- 1950s Creek name changed
- from Judy to Juday
- 1970s Investigations of species biology & secondary production
- 1980s Increased development, changes in land use, and start/end of stream "maintenance"

Juday Creek near N.D. Campus ca. 1910

- 1990s Construction of 2 "new" stream reaches for new Notre Dame golf course
- 2000s 2010s
 Monitoring of stream restoration effectiveness

Studies of Juday Creek since 1978

Investigators*

Agencies

Organizations/Groups

- R. A. Hellenthal
- Bruce Schwenneker
- Marty Berg
- Gary Kohlhepp
- Jeff Runde
- Gary Lamberti
- Steve Silliman
- Limno-Tech, Inc.
- Jo Latimore
- Ashley Moerke
- Eric Strauss
- Kerry Gerard
- Patrick Shirey

- USEPA
- US Army Corps of Engineers
- USF&WS
- USGS
- IDNR
- IDEM
- MACOG

- Izaak Walton League
- Friends of Juday Creek
- St. Joseph River Basin Commission
- Juday Creek Taskforce
- River Watchers
- U.N.D. Classes
- High school river studies groups
- Jim New Associates (now Cardno)
- U.N.D. Warren Golf Course

*More than 150 Notre Dame students have participated in studies of Juday Creek during the past 40 years.

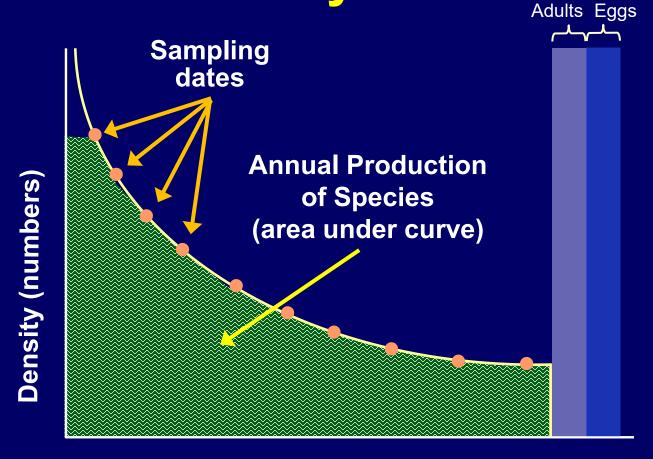
Juday Creek Investigations

- Land use patterns
- Physical and chemical characteristics
- Hydrology
- Sediments
- Chemical pollutants
- Primary production
- Benthic species composition
- Aquatic insect species biology and phenology
- Secondary production rates for key species
- Monitoring of fish populations

Until the mid-1980s Hydropsychid Caddisflies appeared to dominate the insect fauna of Juday Creek

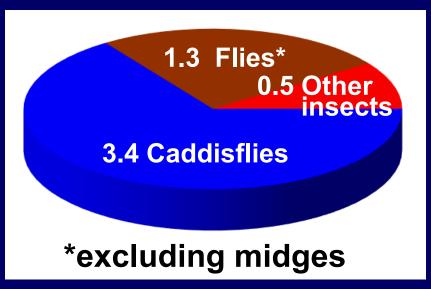
Major Caddisfly Species

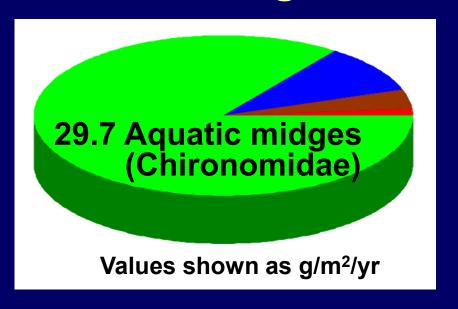
- Cheumatopsyche pettiti
- Hydropsyche (Ceratopsyche) morosa
- Hydropsyche (C.) slossonae
- Hydropsyche (C.) sparna
- Hydropsyche (Hydropsyche) betteni


Hydropsychid caddisfly nets on rock from Juday Creek October, 1980

Filtering insects once dominated, but have declined by as much as 90% in many areas of Juday Creek

Caddisfly larvae taken from 1 sq. ft. areas of Juday Creek in 1980


Secondary production integrates growth, density, and age-specific mortality rates



Mean Individual Biomass (weight)

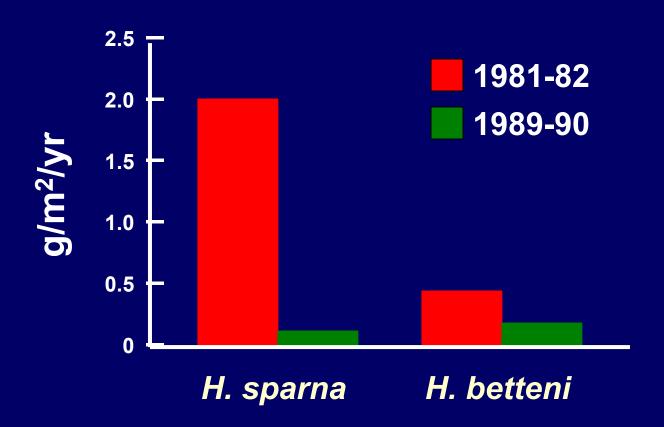
Aquatic Insect Production in Juday Creek

"The Standard Error of the Midge"

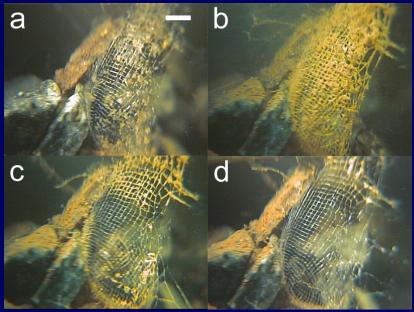
Midge larvae are among the smallest, but most abundant and energetically important insects in Juday creek

Decline and "Death?"

• 1980s


- Corps of Engineers investigates stream for flood control
- Confirmation of small breeding brown trout population by IDNR
- St. Joseph County
 Drainage Board begins
 property assessments.
- Stream "maintenance" begins
- Secondary production of stream insects drops precipitously – brown trout fry no longer found

Cleaning Juday Creek silt trap at Izaak Walton League Preserve

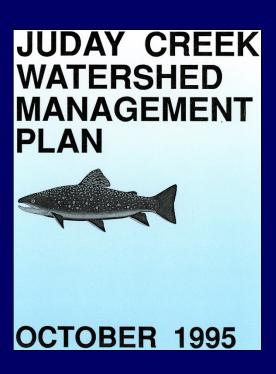

Production rates of hydropsychid caddisfly species 1981-82 vs. 1989-90

Searching for Causes

- Juday Creek water quality is high for midwestern streams
- Water temperatures in lower reaches are cool and largely decoupled from upper reaches
- Greatly increased sediment loads due to stream maintenance and changing land use

Clay particles on nets of caddisfly *Hydropsyche sparna*

The "Resurrection"


- 1990s and beyond
 - Stream "maintenance" stops
 - Public interest and support to "save" stream (e.g., "Friends of Juday Creek")
 - St. Joseph River Basin Commission obtains Clean Water Act 319 grant to study Juday Creek Watershed (1992)
 - Management Plan prepared by Cole Associates for Drainage Board and St. Joseph River Basin Commission (Oct. 1995)
 - Stream restoration projects begin
 - New N.D. Golf Course constructed along stream; two stream reaches diverted into new channels
 - Intensive monitoring (habitat quality, cover, silt, chemicals, invertebrates, fishes)

Juday Creek Management Plan

Goals:

- Preserve and improve the creek's fish and other aquatic species populations to pre-1986 levels
- Reduce frequency and severity of flooding of properties
- Eliminate stream bank erosion
- Prevent groundwater contamination
- Restore sediment movement to natural levels
- Develop master planning process to address future development*
- Reduce E. coli concentrations
- Strictly adhere to regulations governing creek activities
- Establish filter strips along sides of creek in agriculture areas
- Preserve and protect creek's natural wetlands

*Juday Creek Taskforce established Oct. 1995

Juday Creek Taskforce

- Advisory to St. Joseph Co. Drainage Board and County Surveyor's Office – no regulatory authority
- Works with developers, architects, engineers, planners to minimize the impact of projects on Juday Creek
- Membership (as of April 2019):
 - Adam Bowden City of Mishawaka
 - Jessica Clark St. Joseph County Engineering
 - Mark Espich St. Joseph County Health Dept.
 - *Ron Hellenthal N.D. Biology
 - *John Law St. Joseph County Surveyor's Office
 - Sarah Longenecker St. Joseph County Soil & Water Conservation District
 - Matt Meersman St. Joseph River Basin Commission
 - Judy Rosheck Friends of Juday Creek
 - *J.C. Sporleder Izaak Walton League
 - Jordan Wyatt St. Joseph County Planning Dept.

*Original taskforce members (since 1995)

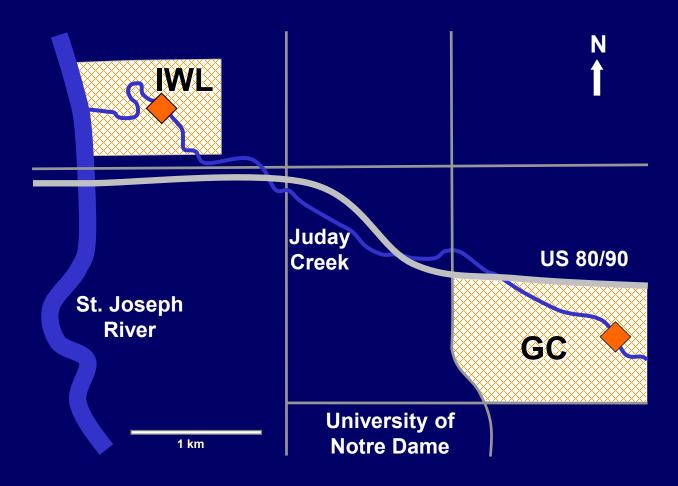
First Taskforce Project

- Lowe's Mishawaka Store (Grape Road)
 - Site developed to minimize impact on creek both during and after construction
 - No runoff to stream from parking area
 - Parking lot runoff retention pond drains from below surface to minimize thermal effects and contamination, and to maximize storm water retention capacity
 - Vegetation buffer strip between pond and stream
 - ~ 25 years later system still functions as designed

1997 Warren Golf Course Juday Creek Restoration

- 800 meters of new stream channel constructed for two reaches
- Bank stabilization and revegetation
- Addition of substrate
- Sinuous channel design
- Creation of pool-riffle sequences
- Installation of upstream sediment trap
- Water first flows into new stream reaches Oct. 1997
- Cost ~\$250,000

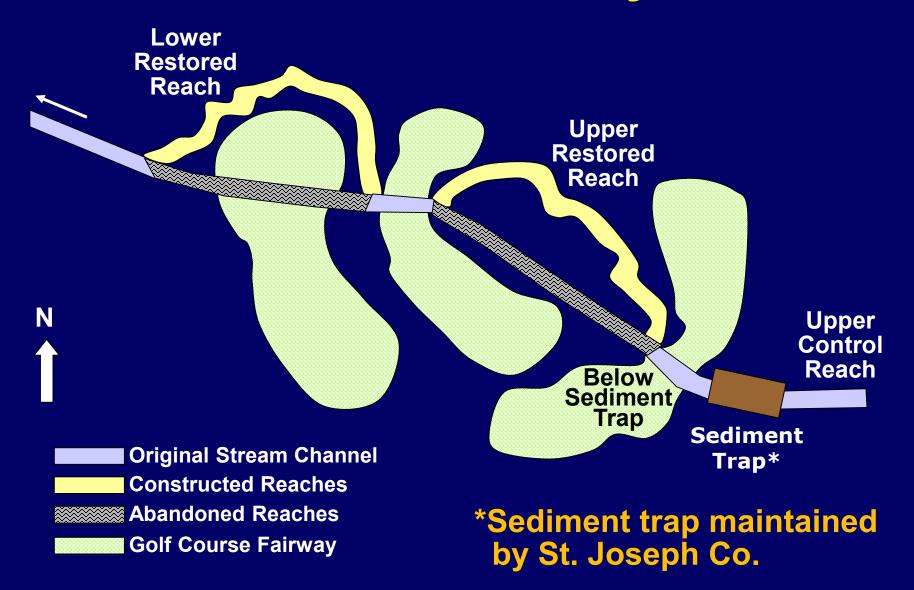
N.D. Golf Course Monitoring 1997-2003 (fishes through 2016)


Biotic

- Benthic invertebrates (density, diversity, %EPT, functional feeding groups)
- Fishes
- Habitat
 - Canopy cover
 - Habitat quality (QHEI)

Abiotic

- Sediment
- Dissolved oxygen
- Conductivity
- -pH
- Temperature
- Stream flow
- Pesticides and other likely chemical contaminants


N.D. Golf Course and Izaak Walton League sites sampled

IWL = Izaak Walton League
GC = Warren Golf Course

N.D. Golf Course Study Sites

Warren Golf Course Restored Sites after 5 years

- Meandering channel
- Cobble/gravel substrate
- Reduced sediment load
- Riffles & pools
- Stabilized banks
- Overhanging vegetation (by 2003)
- Return of native fish species (incl. rock and smallmouth bass)
- Restoration basically successful

"If you build it, they will come."*

...and if you maintain it they will stay!

*"The voice" speaking to Ray Kinsella, Field of Dreams (1989)

